Manikya Bardhan

Working with Tabular Data using FastAI.jl [GSOC]

  1. Introduction
  2. Implemented Functionalities
    1. Containers
    2. Transformations
    3. Model
    4. Learning Methods
  3. Summary of PRs
  4. Future Work
  5. Acknowledgement
  6. References

Introduction

This summer, I worked on FastAI.jl as a part of Google Summer of Code'21 under The Julia Language. My work involved adding tabular support to the package.

If you are unfamiliar with FastAI.jl, it is a package inspired by fastai[1] and is a repository of best practices for deep learning in julia. It offers a layered API that lets you use the higher-level functionalities to perform various learning tasks in around 5 lines of code, and the middle and lower-level APIs can be mixed and matched to create new approaches.

The GSoC project page can be found here.

Implemented Functionalities

We'll go through an end-to-end task to understand the added functionalities. Here's we will be working with the adult dataset and try to perform tabular classification on the salary column to predict if its <50k or >=50k

Containers

Link to PR

The first thing I worked on was adding an index-based data container suitable for tabular data, which follows the interface defined by MLDataPattern.jl. TableDataset accepts any type satisfying the Tables.jl interface and allows querying for any row using getobs and the total number of observations using nobs.

On top of this, among some of the other things the container lets you do are performing arbitrary functions on the observations lazily, splitting containers, and creating a DataLoader suitable for training.

using FastAI
data = TableDataset(joinpath(datasetpath("adult_sample"), "adult.csv"));

getobs(data, 1), nobs(data)
(DataFrameRow
 Row │ age    workclass  fnlwgt  education    education-num  marital-status       occupation  relationship  race    sex      capital-gain  capital-loss  hours-per-week  native-country  salary
     │ Int64  String     Int64   String       Float64?       String               String?     String        String  String   Int64         Int64         Int64           String          String
─────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │    49   Private   101320   Assoc-acdm           12.0   Married-civ-spouse  missing      Wife          White   Female             0          1902              40   United-States  >=50k, 32561)

We'll now split off our target column from the data container using mapobs.

splitdata = mapobs(row -> (row, row[:salary]), data)

Transformations

Link to PR

Once we have our container, to make it usable for training we'll pre-process it using the tabular transformations added to DataAugmentation.jl, which are -

As these transformations are applied on individual rows (or TabularItem to be precise), we collect all the needed dataset statistics beforehand. This is done by creating an indexable collection (such as Dict) with the column as keys and required statistics as the value. For example, to create the normalization dictionary, we'll need the values to be tuples of the mean and standard deviations of the columns.

There are various helper methods defined which make this process very easy if there is a TableDataset created already, but it is still possible to prepare everything manually and pass in the required statistics for maximum flexibility.

using DataAugmentation
catcols, contcols = FastAI.getcoltypes(data)
normdict = FastAI.gettransformdict(data, DataAugmentation.NormalizeRow, contcols)
Dict{Any, Any} with 6 entries:
  :fnlwgt => (1.89778e5, 105550.0)
  :age => (38.5816, 13.6404)
  Symbol("education-num") => (10.0798, 2.573)
  Symbol("capital-loss") => (87.3038, 402.96)
  Symbol("capital-gain") => (1077.65, 7385.29)
  Symbol("hours-per-week") => (40.4375, 12.3474)

Now we can create the transform by passing in the constructed collections.

normalize = DataAugmentation.NormalizeRow(normdict, contcols)
DataAugmentation.NormalizeRow{Dict{Any, Any}, NTuple{6, Symbol}}(Dict{Any, Any}(:fnlwgt => (189778.36651208502, 105549.97769702229), :age => (38.58164675532078, 13.640432553581315), Symbol("education-num") => (10.079815426825466, 2.572999154730833), Symbol("capital-loss") => (87.303829734959, 402.9602186489992), Symbol("capital-gain") => (1077.6488437087312, 7385.292084840338), Symbol("hours-per-week") => (40.437455852092995, 12.34742868173185)), (:age, :fnlwgt, Symbol("education-num"), Symbol("capital-gain"), Symbol("capital-loss"), Symbol("hours-per-week")))

To now use the transformation, we'll have to create a TabularItem to apply it on, and then call apply on it.

using Tables

item = TabularItem(getobs(data, 1), Tables.columnnames(data.table))
DataAugmentation.TabularItem{DataFrames.DataFrameRow{DataFrames.DataFrame, DataFrames.Index}}(DataFrameRow
 Row │ age    workclass  fnlwgt  education    education-num  marital-status       occupation  relationship  race    sex      capital-gain  capital-loss  hours-per-week  native-country  salary
     │ Int64  String     Int64   String       Float64?       String               String?     String        String  String   Int64         Int64         Int64           String          String
─────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │    49   Private   101320   Assoc-acdm           12.0   Married-civ-spouse  missing      Wife          White   Female             0          1902              40   United-States  >=50k, [:age, :workclass, :fnlwgt, :education, Symbol("education-num"), Symbol("marital-status"), :occupation, :relationship, :race, :sex, Symbol("capital-gain"), Symbol("capital-loss"), Symbol("hours-per-week"), Symbol("native-country"), :salary])
apply(normalize, item).data
(age = 0.7637846676602542, workclass = " Private", fnlwgt = -0.8380709161872286, education = " Assoc-acdm", education-num = 0.7462826288318035, marital-status = " Married-civ-spouse", occupation = missing, relationship = " Wife", race = " White", sex = " Female", capital-gain = -0.14591824281680102, capital-loss = 4.5034127099423245, hours-per-week = -0.035428902921319616, native-country = " United-States", salary = ">=50k")

The other transforms work similarly.

Model

Link to Model PR
Link to Embedding PR

We created a deep learning model suitable for tabular data by re-engineering the model present in fastai[2]. The backbone of the model is structured with a categorical and a continuous component. It accepts a 2-tuple of categorical (label or one-hot encoded) and continuous values, where each backbone applies to each element of the tuple. The output from these backbones is then concatenated and passed through a series of linear-batchnorm-dropout layers before a finalclassifier block, whose size could be task dependant.

The categorical backbone consists of an embedding layer for each categorical column and makes use of the concept of entity embeddings[3]. Instead of just one-hot encoding the categorical columns, representing these values in an "embedding space" makes it so that similar values could be closer to each other. This can reveal the intrinsic properties of the categorical variables and even reduce memory usage.

We have mainly two methods for creating a TabularModel.

The simplest method of constructing a TabularModel is through the first method, which involves passing the number of continuous columns, output size and a collection of cardinalities (number of unique classes) for the categorical columns.

num_cont = length(contcols)
outsize = 2

catdict = FastAI.gettransformdict(data, DataAugmentation.Categorify, catcols)
cardinalities = [length(catdict[col]) for col in catcols]

FastAI.TabularModel(num_cont, outsize; cardinalities=cardinalities)
Chain(
  Parallel(
    vcat,
    Chain(
      FastAI.Models.var"#43#45"(),
      Parallel(
        vcat,
        Embedding(10, 6),               # 60 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(8, 5),                # 40 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(7, 5),                # 35 parameters
        Embedding(6, 4),                # 24 parameters
        Embedding(3, 3),                # 9 parameters
        Embedding(43, 13),              # 559 parameters
        Embedding(3, 3),                # 9 parameters
      ),
      identity,
    ),
    BatchNorm(6),                       # 12 parameters, plus 12
  ),
  Chain(
    Dense(61, 200, relu; bias=false),   # 12_200 parameters
    BatchNorm(200),                     # 400 parameters, plus 400
    identity,
  ),
  Chain(
    Dense(200, 100, relu; bias=false),  # 20_000 parameters
    BatchNorm(100),                     # 200 parameters, plus 200
    identity,
  ),
  Dense(100, 2),                        # 202 parameters
)                   # Total: 19 arrays, 34_022 parameters, 132.523 KiB.

While using the second method for creating the model, we'll have to define our categorical backbone, continuous backbone, and an optional finalclassifier layer.

To create a categorical backbone with entity embeddings, we'll have to decide on the embedding dimensions. By default, these can be calculated using fastai's rule of thumb (see emb_sz_rule function) but can be overridden easily using size_overrides. Or we can even pass in an arbitrary vector of embedding sizes if you prefer not to use get_emb_sz.

Check out the docs for more information about different methods available for get_emb_sz.

embedszs = FastAI.Models.get_emb_sz(cardinalities, catcols, Dict(:workclass => 20))
9-element Vector{Tuple{Int64, Int64}}:
 (10, 20)
 (17, 8)
 (8, 5)
 (17, 8)
 (7, 5)
 (6, 4)
 (3, 3)
 (43, 13)
 (3, 3)
contback = FastAI.Models.tabular_continuous_backbone(6)
catback = FastAI.Models.tabular_embedding_backbone(embedszs, 0.2)

Chain(
  FastAI.Models.var"#43#45"(),
  Parallel(
    vcat,
    Embedding(10, 20),                  # 200 parameters
    Embedding(17, 8),                   # 136 parameters
    Embedding(8, 5),                    # 40 parameters
    Embedding(17, 8),                   # 136 parameters
    Embedding(7, 5),                    # 35 parameters
    Embedding(6, 4),                    # 24 parameters
    Embedding(3, 3),                    # 9 parameters
    Embedding(43, 13),                  # 559 parameters
    Embedding(3, 3),                    # 9 parameters
  ),
  Dropout(0.2),
)                   # Total: 9 arrays, 1_148 parameters, 168 bytes.
And now we can pass these in TabularModel, along with a bunch of other optional keyword args to get our model.

FastAI.TabularModel(
    catback, 
    contback, 
    Chain(Dense(100, 2), x->FastAI.Models.sigmoidrange(x, 2, 5)),
    layersizes=(200, 100, 100),
    dropout_rates = [0.1, 0.2, 0.1],
    activation=Flux.sigmoid
)

Chain(
  Parallel(
    vcat,
    Chain(
      FastAI.Models.var"#43#45"(),
      Parallel(
        vcat,
        Embedding(10, 20),              # 200 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(8, 5),                # 40 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(7, 5),                # 35 parameters
        Embedding(6, 4),                # 24 parameters
        Embedding(3, 3),                # 9 parameters
        Embedding(43, 13),              # 559 parameters
        Embedding(3, 3),                # 9 parameters
      ),
      Dropout(0.2),
    ),
    BatchNorm(6),                       # 12 parameters, plus 12
  ),
  Chain(
    Dense(75, 200, σ; bias=false),      # 15_000 parameters
    BatchNorm(200),                     # 400 parameters, plus 400
    Dropout(0.1),
  ),
  Chain(
    Dense(200, 100, σ; bias=false),     # 20_000 parameters
    BatchNorm(100),                     # 200 parameters, plus 200
    Dropout(0.2),
  ),
  Chain(
    Dense(100, 100, σ; bias=false),     # 10_000 parameters
    BatchNorm(100),                     # 200 parameters, plus 200
    Dropout(0.1),
  ),
  Chain(
    Dense(100, 2),                      # 202 parameters
    var"#5#6"(),
  ),
)                   # Total: 22 arrays, 47_162 parameters, 184.641 KiB.
layersizes and size_overrides keyword args are also available in the first method if needed.

Learning Methods

Link to PR

A Learning Method can be thought of as a concrete approach for solving a "learning task" (eg. tabular classification, tabular regression etc.)[4]

To implement a Learning Method in FastAI.jl, we have 2 main options.

In most cases, using the DataBlock API should be sufficient for most learning tasks.

The DataBlock API lets us put together a learning method using "data blocks" which represent the type of data. For example, a TableRow data block carries all the information about the row, like which columns are categorical and continuous, and what classes a particular categorical column can have. In addition to TableRow, a Continuous block was also added which can help in regression tasks.

One important thing to keep in mind is that these data blocks don't actually carry the data, but just contain meta-data about the underlying data.

In addition to specifying the data blocks, we can also choose to apply any processing step which might be required to make the data suitable for training. For example TabularPreprocessing allows us to use the transformations specified previously to pre-process the rows.

Since our target column is a categorical value and we want to perform classification, we'll use the Label block to represent the target.

method = BlockMethod(
    (
        TableRow(catcols, contcols, catdict), 
        Label(unique(data.table[:, :salary]))
    ),
    ((FastAI.TabularPreprocessing(data)), FastAI.OneHot())
)
BlockMethod(FastAI.TableRow{9, 6, Dict{Any, Any}} -> FastAI.Label{String})

The DataBlock API is very flexible and we can put together an arbitrary number of blocks for any kind of learning task.

Creating a learning method for regression tasks is as easy as substituting the target block with a Continuous block where the size would represent the number of target columns.

method2 = BlockMethod(
    (
        TableRow(catcols, contcols, catdict), 
        Continuous(3)
    ),
    ((FastAI.TabularPreprocessing(data),))
)
BlockMethod(FastAI.TableRow{9, 6, Dict{Any, Any}} -> FastAI.Continuous)

If our learning task is either tabular classification or regression, we can even use the high-level wrappers defined for these tasks to get the method easily.

method = TabularClassificationSingle(
    catcols,
    contcols,
    unique(data.table[:, :salary]);
    data)
BlockMethod(FastAI.TableRow{9, 6, Dict{Any, Any}} -> FastAI.Label{String})

With this method, it is possible for us to encode our data, get a model and loss function suitable for the data, and even directly create a Learner which can be used for training.

To get a quick summary of the steps which will be performed while encoding, we can use the describemethod function.

describemethod(method)
  LearningMethod summary
  ------------------------

    •  Task: FastAI.TableRow{9, 6, Dict{Any, Any}} ->
       FastAI.Label{String}

    •  Model blocks: FastAI.EncodedTableRow{9, 6, Dict{Any, Any}} ->
       FastAI.OneHotTensor{0, String}

  Encoding a sample (encode(method, context, sample))

              Encoding            Name                             method.blocks[1]               method.blocks[2]
  –––––––––––––––––––– ––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––––
                       (input, target)        FastAI.TableRow{9, 6, Dict{Any, Any}}           FastAI.Label{String}
  TabularPreprocessing                 FastAI.EncodedTableRow{9, 6, Dict{Any, Any}}           FastAI.Label{String}
                OneHot          (x, y) FastAI.EncodedTableRow{9, 6, Dict{Any, Any}} FastAI.OneHotTensor{0, String}

  Decoding a model output (decode(method, context, ŷ))

              Decoding        Name             method.outputblock
  –––––––––––––––––––– ––––––––––– ––––––––––––––––––––––––––––––
                                ŷ FastAI.OneHotTensor{0, String}
                OneHot                       FastAI.Label{String}
  TabularPreprocessing target_pred           FastAI.Label{String}

Let's use this method to encode a row of data.

The input here is a tuple of all row values and the target value.

row = getobs(splitdata, 1000)

(DataFrameRow
  Row │ age    workclass   fnlwgt  education  education-num  marital-status       occupation         relationship  race    sex     capital-gain  capital-loss  hours-per-week  native-country  salary
      │ Int64  String      Int64   String     Float64?       String               String?            String        String  String  Int64         Int64         Int64           String          String
──────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
 1000 │    61   State-gov  162678   5th-6th             3.0   Married-civ-spouse   Transport-moving   Husband       White   Male              0             0              40   United-States  <50k, "<50k")
On encoding, we get back a tuple where the input values have been normalized, missing values filled with the column median, and categorical values label encoded. The output value has been one-hot encoded.

encode(method, Training(), row)
(([5, 16, 2, 10, 5, 2, 3, 2, 3], [1.6435221651965317, -0.2567538819371021, -2.751580937680526, -0.14591824281680102, -0.21665620002803673, -0.035428902921319616]), Float32[0.0, 1.0])

To get a model suitable for this learning method, we can use the methodmodel function.

methodmodel(method, NamedTuple())
Chain(
  Parallel(
    vcat,
    Chain(
      FastAI.Models.var"#43#45"(),
      Parallel(
        vcat,
        Embedding(10, 6),               # 60 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(8, 5),                # 40 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(7, 5),                # 35 parameters
        Embedding(6, 4),                # 24 parameters
        Embedding(3, 3),                # 9 parameters
        Embedding(43, 13),              # 559 parameters
        Embedding(3, 3),                # 9 parameters
      ),
      identity,
    ),
    BatchNorm(6),                       # 12 parameters, plus 12
  ),
  Chain(
    Dense(61, 200, relu; bias=false),   # 12_200 parameters
    BatchNorm(200),                     # 400 parameters, plus 400
    identity,
  ),
  Chain(
    Dense(200, 100, relu; bias=false),  # 20_000 parameters
    BatchNorm(100),                     # 200 parameters, plus 200
    identity,
  ),
  Dense(100, 2),                        # 202 parameters
)                   # Total: 19 arrays, 34_022 parameters, 132.523 KiB.

Here the second parameter is a NamedTuple of backbones. The keys can be

corresponding to the specific backbones, and we can choose to specify any combination of these to customize our model.

methodmodel(method, (categorical=catback,))
Chain(
  Parallel(
    vcat,
    Chain(
      FastAI.Models.var"#43#45"(),
      Parallel(
        vcat,
        Embedding(10, 20),              # 200 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(8, 5),                # 40 parameters
        Embedding(17, 8),               # 136 parameters
        Embedding(7, 5),                # 35 parameters
        Embedding(6, 4),                # 24 parameters
        Embedding(3, 3),                # 9 parameters
        Embedding(43, 13),              # 559 parameters
        Embedding(3, 3),                # 9 parameters
      ),
      Dropout(0.2),
    ),
    BatchNorm(6),                       # 12 parameters, plus 12
  ),
  Chain(
    Dense(75, 200, relu; bias=false),   # 15_000 parameters
    BatchNorm(200),                     # 400 parameters, plus 400
    identity,
  ),
  Chain(
    Dense(200, 100, relu; bias=false),  # 20_000 parameters
    BatchNorm(100),                     # 200 parameters, plus 200
    identity,
  ),
  Dense(100, 2),                        # 202 parameters
)                   # Total: 19 arrays, 36_962 parameters, 143.523 KiB.

To get an iterable for our data, we can use the methoddataloader function

traindl, valdl = methoddataloaders(splitdata, method, 128; pctgval = 0.2, shuffle = true, buffered=false)
(DataLoaders.GetObsParallel{DataLoaders.BatchViewCollated{DLPipelines.MethodDataset{FastAI.BlockMethod{Tuple{FastAI.TableRow{9, 6, Dict{Any, Any}}, FastAI.Label{String}}, Tuple{FastAI.TabularPreprocessing{DataAugmentation.Sequence{Tuple{DataAugmentation.FillMissing{Dict{Any, Any}, NTuple{6, Symbol}}, DataAugmentation.NormalizeRow{Dict{Any, Any}, NTuple{6, Symbol}}, DataAugmentation.Categorify{Dict{Any, Any}, NTuple{9, Symbol}}}}}, FastAI.OneHot{DataType}}, FastAI.OneHotTensor{0, String}}}}}(batchviewcollated() with 204 batches of size 128, true), DataLoaders.GetObsParallel{DataLoaders.BatchViewCollated{DLPipelines.MethodDataset{FastAI.BlockMethod{Tuple{FastAI.TableRow{9, 6, Dict{Any, Any}}, FastAI.Label{String}}, Tuple{FastAI.TabularPreprocessing{DataAugmentation.Sequence{Tuple{DataAugmentation.FillMissing{Dict{Any, Any}, NTuple{6, Symbol}}, DataAugmentation.NormalizeRow{Dict{Any, Any}, NTuple{6, Symbol}}, DataAugmentation.Categorify{Dict{Any, Any}, NTuple{9, Symbol}}}}}, FastAI.OneHot{DataType}}, FastAI.OneHotTensor{0, String}}}}}(batchviewcollated() with 26 batches of size 256, true))

and for getting a suitable loss function, methodlossfn comes in handy.

methodlossfn(method)
logitcrossentropy (generic function with 1 method)

All of these steps can be customized according to requirements and can be put together to create a Learner for training.

The methodlearner function abstracts these functions to directly get a Learner.

learner = methodlearner(method, splitdata, (categorical=catback,), Metrics(accuracy), batchsize=128, dlkwargs=NamedTuple(zip([:buffered], [false])))
Learner()

Now, we can use this for training our model by calling the fit or fitonecycle function on it provided by FluxTraining.

fit!(learner, 1)
┌───────────────────────────────────┬───────┬────────┬──────────┐
│                             Phase │ Epoch │   Loss │ Accuracy │
├───────────────────────────────────┼───────┼────────┼──────────┤
│ FluxTraining.Phases.TrainingPhase │   1.0 │ 0.1368 │  0.94719 │
└───────────────────────────────────┴───────┴────────┴──────────┘
┌─────────────────────────────────────┬───────┬─────────┬──────────┐
│                               Phase │ Epoch │    Loss │ Accuracy │
├─────────────────────────────────────┼───────┼─────────┼──────────┤
│ FluxTraining.Phases.ValidationPhase │   1.0 │ 0.00205 │      1.0 │
└─────────────────────────────────────┴───────┴─────────┴──────────┘

Summary of PRs

Link to PR/commitDescriptionStatus
FastAI.jl #26Adds TableContainerMerged
DataAugmentation.jl #45Adds table transforms and itemMerged
FastAI.jl #124Adds table modelMerged
Flux.jl #1656Updates Embedding layer, adds Flux.outputsize support for Embedding layer, and doc updatesWaiting for a decision on the best way to handle this case for Flux.outputsize
FastAI.jl #141Adds tabular blocks and encodings, fixes some bugs, adds hash for adult_sample dataset.Merged
fluxml.github.io #94Blog post showing some of the implemented functionalities.Will be moved to the new FastAI.jl website (under construction)

Future Work

More comprehensive documentation and notebooks can be added to demonstrate the various features. Out of the box support for additional learning methods like multiple column classification or a combination of regression and classification tasks would also be nice to have. Implementation for complex tabular models like SAINT[5] will further improve the capabilities of the package.

Acknowledgement

All of this wouldn't have been possible at all without the continuous support and teachings of my mentors Kyle Daruwalla, Brian Chen and Lorenz Ohly. From knowing nothing about the Julia Language to completing this project really shows the amount of effort they have put in for helping me through every step of this project.

The whole community has been really helpful as well, with their constant support and suggestions. From the informative references Ari provided about what's happening in the ecosystem, the various critiques and suggestions from Dhairya, the helpful reviews from Michael, Logan and the rest of the community, it has really been a very fun and great learning experience.

I would also like to thank Google and the whole Summer of Code team for creating a really wonderful program and providing us with this opportunity.

References

[1] fastai: A Layered API for Deep Learning
[2] fastai's TabularModel
[3] Entity Embeddings of Categorical Variables
[4] From the DLPipelines.jl docs
[5] SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training